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FOREWORD

The University of Houston under a Department
of Defense, Project THEMIS grant, Office of Naval
Research Contract N00014-68-2-0151 is engaged in the
development of a computer information system in sup-
port of design, simulation and command/control. One
aspect of the project is the development of general
purpose computer programs for systems analysis. The
present report is the analytical phase of a system
identification (generalized mathematical modeling)
package based on quasilinearization. A user-oriented
computer software subsystem is availakle to aid in
the application of the process described in this re-
port and will be described in a subsequent user's
manual. Additional information on the availability
of the program and its relation to an integrated
design and simulation system may be obtained from:
Cullen College of Engineering, Project THEMIS,

University of Houston, Houston, Texas 77004.
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ABSTRACT

A procedure for identification in partial differential
equations is described and illustrated by the Laplace
equation and the unsteady heat conduction equation. The
procedure for solution involves the substitution of
difference operators for the partial derivatives with
respect to all but one of the independent variables. The
linear boundary value problem is solved by superposition of
particular solutions. For nonlinear boundary value problems
which arise from the original form of the equation or from
the identification procedure, a Newton-Raphson-Kantorovich
expansion in function space is used to reduce the solution
té an iterative procedure of solving linear boundary value
problems.

For the problems considered, this procedure has proven
to be effective and results in a reasonable approximation
to the solution of the boundary value problem in partial
differential equations. For the identification problem,
it is shown that the constant parameters are identified to
the same accuracy as the supplementary data used in the
identification procedure.

Incorporated in this identification procedure is the
possibility in the case of overspecified data of meeting
certain boundary conditions exactly and satisfying the
remaining in a "best-fit manner."
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CHAPTER I
INTRODUCTION

Inverse problems in systems of differential equations
have received considerable attention in the past few years.
The applications of the techniques to solve these problems
are being used in many areas of engineering and medical
research. |

In this dissertation we shall consider a type of
inverse problem in which it is required to determine some
of the coefficients in a partial differential equation.
This type of inverse problem is also referred to as an
identification problem.

In general, the present easily solved, numerically or
analytically, identification problems are limited to
ordinary differential equations. We will consider the
application of one of these numerical techniques to partial
differential equations and show that a large number of these
can be solved with a reasonable labor.

This method uses quasilinearization. In the past few
years many papers have been written showing how quasi-
linearization may be used to solve boundary value problems
of nonlinear ordinary differential equations. This same
procedure used to solve the boundary value problem can be

used for the identification of constant coefficients by




adding the differential equation for these constants and
increasing the order of the system of equations.

Many of the problems of nonlinear partial differential
equations are formidable in analytic form and researchers
have relied on approximate techniques to solve these
equations. This dissertation will be involved with the
numerical integration of a set of ordinary differential
equations resulting from an approximate method for solving
partial differential equations.

One approximate method which has been studied in
recent literature is known as the "method of lines" or
"reduction to differential-difference equations" (see
Appendix A)l The ordinary differential equations rgsulting
from this approximation have been solved analytically in a
few cases [1,2,3] and shown for general classes of linear
problems to converge to the continuous solution as the
discretizations are made arbitrarily small [4,5]. This
approximation will be usedvto facilitate the solution of
boundary value problems and the inverse problem associated
with it.

The method of reducing partial differential equations
to ordinary differential equations and the method of

identification are discussed in Chapter II. A discussion

1Appendix A is a definition of terms used in the
dissertation



of boundary value problems will also be included in this
chapter since the solution of such problems is an integral
part of the method of identification.

The numerical results of the examples illustrated in
Chapter II are given in Chapter III. Examples are shown of
the identification of stable and unstable equations.
Solutions of boundary value problems for both linear and
nonlinear equations are illustrated with numerical consid-
erations. A strateé& for solving boundary value problems
which become unbounded is also discussed in Chapter III.
This strategy is an imbedding procedure and will be
referred to as the method of similar boundary value prob-
lems. This will be illustrated for a mildly nonlinear
equation.

Chapter IV contains the summary, conclusions, and

recommendations for further work.

Statement of Problem

The problem is to describe and demonstrate the use of
a method of solving the inverse problem which identifies
parameters in partial differential equations. This method
is based on quasilinearization [6] which has been success-
fully used for identification in both linear and nonlinear
ordinary differential equations. This dissertation will

show an identification procedure which can be applied to a




partial differential equation which has been reduced to a
set of ordinary differential difference equations.

Both stable and unstable equations will be investi-
gated to find what limitations are placed on such an
identification procedure when there is some doubt as to
their stability. Also, the problem of dimensionality will
be discussed with relationship to accuracy and computer
time. In addition, it 1s necessary to discuss the numerical
solution of the boundary value problem which results from

the method of reduction to ordinary differential equations.

Previous Work

The relative importance of techniques for solving
inverse problems has been recognized for several years.
Both statistical and deterministic methods of identifi-
cation have been developed for ordinary differential
equations. In the past few years some effort has been
made to extend these methods of identification to partial
differential equations.

Perdreauville [7] discusses the extension .of the
method of Shinbrot [8]. This method does not obtain a
solution of the partial differential equation but results
in the evaluation of integrals over the domain which are
evaluated by use of the physical data. This method-is

applicable only to equations whose elements can be
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integrated by parts. However, he has illustrated that some
alterations can be made to certain equations which are not
directly integrable by parts.

Jones and Douglas [9] have shown the existence and
uniqueness of the determination of a coefficient in the one
dimensional unsteady heat conduction problem. Cannon [10]
considers the existence and uniqueness of another type of
inverse problem which is the determination of an unknown
heat source from overspecified data.

One of the deterministic methods which has been
developed is the use of quasilinearization to solve a
nonlinear system of ordinary boundary value problems. The
method is easily adapted to an identification procedure by
coupling the differential equations for constants to the
system and solving the boundary value problem. The develop-
ment of these procedures was initiated by Bellman and Kalaba
[6]. Holloway [11] used these ideas to investigate the
feasibility of identification of the earth's geopotential
from data of a synchronous satellite. Paine [12] reviews
the use of quasilinearization in the computation of optimal
control. The solution of nonlinear ordinary differential
equations with non-linear boundary values was considered by
Lee [13].

To directly use the ideas already developed for

ordinary differential equations, it is necessary to reduce




the partial differential equation to a system of ordinary
equations. Detchmendy [14] used the transformation of the
independent variables as one method of reduction and
characteristics in hyperbolic equations as a second method
of reduction. The method of transformation requires the
transformation of boundary conditions and the inverse
transform to obtain the solution in its original coordi-
nates. The method of characteristics is applicable to only
a special type of partial differential equation.

The method of reduction employed in this dissertation
is called the "method of lines" [1,4] or "analog solution"
[15,16]. It is an approximate method which has been
investigated primarily because it reduces the partial
differential equation to a system of ordinary equations.
The convergence of the approximate solution to the continu-
ous solution has been considered by several authors.
Lebedev [4] illustrates the application for a number of
problems and establishes the convergence of the solution
for some of these equations. Establishment of convergence
and estimates of the error of the approximate solution have
been considered in a number of papers [5,15,17,18)] for
particular linear heat conduction equations.

This approximate method is also referred to as the
analog'solution because of its applicability to analog |

computers. The approximate solution of a limited number of
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linear parabolic and hyperbolic equations are considered in

references [16,19-23]. Fisher [16] discusses the use of
higher order. approximations of derivatives for obtaining a
more accurate solution. Greeﬁwood [21] makes a comparison
of a higher order scheme with lower order schemes for the
beam vibration problem and shows that the increase of
accuracy is significant.

This method is referred to in Russian literature as
the "method of lines." Lebedev [4] states that "from a
methodological point of view it should be more correctly
called the differential-difference method or the differ-
ential-difference Fourier method." 1In all the examples
which Lebedev considered, separation of variables was
possible which led to Fourier series and thus the connec-
tion with the Fourier method is obvious. Two of the
recently translated papers [1l,2] have shown the explicit
solution of these equations by reducing them to a canonical
form and solving the resulting equations in the transformed
space.

One of the more complete analytical references on the
method of lines is a text by Berezin and Zhidkov [3] which
also includes a number of references to earlier Russian
literature.

Boyd [24] has used this approximate method for a

solution of the Hemholtz equation in a spherical coordinate




system.

Sarmin and Chudov [25] have presented the analysis of
stability of the integration of the resulting ordinary
differential equations by a fourth order Runge-Kutta method
and various orders of Adams methods. The models used in

this analysis were

U _ c ou

X oy

2u _ . 2*uw
x — © a\JZ

and tables of limits were given for stability with respect

to Cauchy data.




CHAPTER II

THEORY OF SOLUTION

Reduction to a Set of Ordinary Differential Equations

The reduction of a partial differential equation to
a set of ordinary differential equations by the use of
difference operators leads to an approximate method of
solving partial differential equations. Since the solution
is found along continuous lines, this method is referred to
in Russian literature aé the "method of lines." 1In other
papers it 1is often referred to as the analog solution since
this form of approximation is well suited to the use of
analog computers.

The approximation is attained by substituting differ-
ence operators for the partial derivatives with respect to
all but one of the independent variables. Thus, the
equation depends only on one independent variable and is
reduced to a set of ordinary differential-difference
equations.

For illustration purposes, consider the following

second-order partial differential equation

Woxx = GLU Wy , WUyy, X, y) (2.1)

By assuming that u(x,y) is sufficiently smooth, we may



10
- replace the derivatives with respect to the y direction by
the finite difference approximations

o

ot
oYy = B (Ulyp)

2

2 .
e = B Uy

Thus Eq. (2.1) reduces to a system of ordinary differential

equations

2.
j 52‘ = q (U, ENUD, EF (WD, X5ye +1h ) (2.2)
1 £ 1 4n

where

UL < Ui(x) = w (%, Yo+ ih)

The choice of El and E2, which are finite difference
operators, is important to the nature of the solution.
Throughout this dissertation the order of an operator will
have reference to the order with respect to its error.

The first and most basic approach is to use second
order central difference approximations for the deriva-
tives. The convergence proofs given by Douglas [18],
Landau [15), and Friedman [17] were based on such a second
order approximation in the unsteady heat conduction

equation. Associated with such an approximation is an
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error which will be termed the truncation error. This
truncation error may be made arbitrarily small, but the
required number of equations to be solved can become
cumbersome. .

Another alternative suggested by Fisher [16] is the
use of higher order difference operators for the deriva-
tives. This alternative does not complicate the method of
solution, but instead leads to greater accuracy than is
characteristic of the lower order approximation. Fisher
shows that if the same higher order operator is used for
all lines, additional boundary values are required and
"spurious roots" are introduced into the solution. For
example, consider E2 to be a fourth order central differ;

ence operator which requires values for Ui+2’ U U

i+1° “i°

U and U For lines i = 1 and i = n-l1 values would be

i-1 i-2°
required for U_; and U,,, where U, and U,,; are known
boundary values. Fisher suggests that where the boundary
values U_(x) and U, ;(x) are known explicity that U_j and
Upay be calculated by imposing the differential equation

itself together with the second order approximations,
Ui = (Ui-y - Uiss) /2
EQUi)= (-Ui-t + Uisy) /2 2y | (2.3)
E2(UD=( Ui —2Ui + Uis) /BY?
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For Eq. (2.1) the imposed condition is

d®Uo _
where d2Uo/dx2 is known and Egs. (2.3) have been substi-

tuted into Eg. (2.2). U . is the only unknown in Egq. (2.4)

-1
and its value is used to complete the fourth order approxi-

mation. In like manner, U may be found.

n+l
The extra boundary conditions and "spurious roots"
may be avoided by using a difference approximation of the
same higher order which includes only interior lines and
the boundary. This requires special formulas for outer
lines, but it does avoid the necessity of introducing extra
boundary conditions.
As an illustration, consider a simulation of the
Laplace equation
d°U;
Lo 2 . 5
Ixz - —E U 14iénm (2.5)

where

EZ(U;) =(Uiss + 18 Ui41-30U; #1868 Uiy —Ui2 ) /12 Agf
(2.6)

114w
Writing Eq. (2.6) at i = 2 requires us to solve for Ul’ U,
o
and U _. Likewise, at i = n, Un’ U

n+1
This introduces the need for extra boundary conditions

, and U are needed.
n+2

which may be found by imposing the differential equation.
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Alternatively, these extra boundary conditions may be
avoided by using the following fourth order approximations
for the equations at i = 1 and i =n

EZU) =(Us~ 6Us +14Us =4 U, — 15U 10U, )/ 12 A(Lf )
: 2.7

E2(Up) =(Un-s = 6 Ung*+ 14 Unz =4 Un-s ~15 U +10 Unas) /12 847
Ee(Ui) is known for all lines and is dependent only on the
given boundary conditions and lines interior to the domain.

Presented in Chapfer‘III are results which show that
this higher order approximation gives better accuracy for
a reasonable number of lines without additional expense in
calculation. At this stage, the term reasonable number of
lines is nebulus. However, it will become more clear as
the method is described and the numerical results are

presented.

Lebedev [4] has considered another line method of
approximation which is of fourth order accuracy. The

second order central difference approximation is expanded

by a Taylor series about u(x,yi)

U(X,guﬂ -2 M(X,HO-FU\(X,\AL_D
= WY +h) —2u v, y) + U %,y —h)
W 3%u

+____._.__..._.
31 ay?3
Yi e Yi

2 2
oul L h 97U

=uUbGYl) +h5yly 2 e
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Y 9u U
+h-!- 'é—\?’\at — 2 U,y )+ U (X)) ha_}i‘\ji
he 2%U K 93 Rt 2*u
T2 Y gy T o3|y T4
2 3% h4 34U
N Tl Tz 'a“'?lgl + o(h”) (2.8)
and likewise
2w a*’-u 2 3L 4
I o)
Thus, by eliminating 3 ‘fu/ 3yt .
U(X,\ﬂ'\-t-i) —-Z-u()(,lji‘) +U(¥,Hi__i)
2°U 3%u azu
—(24 +109— -+ —o(nh
( Y Yty a’ﬂz Y )h/‘a (2. 10)

If the original partial differential equation is solved
for d2u/dy® and substituted into Eq. (2.10), the
resulting equation will be an approximation of fourth

order.

As an illustration, consider the Laplace equation

Uyy +Uyy =0 (2.11)

Solving for uyy in Eq. (2.11) and substituting into Egq.
(2.10)
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. (4
iz ( ‘323?‘.“ 3XU£ + ig{i ) + 1 Uier —2U{ + Ui

2
+h (Usi—2Ui + Ui ) =
(2.12)
Formulating Eq. (2.12) as a matrix equation,
d?’ — 2 _
where
10 1O O O o |
1 10 i - O O @)
L O 1 10 - O O O
A = = . ) : : .
@) O o - 1 10 1
. O O O - 1 10 |
_ ' =
2 -1 O O O O
-1 2 -A - 0O O O
o -1 2z o) @) O
o) o O -1 2 -A
O @) O - O -1 ]
[ d*Us ]
dxa + 12 Uo
=_ 1 0
B—'12. .
O
ZUn
+
i dx ‘2- UV‘\ ]




16

To be able to use this higher order approximation within

the context of the methods discussed in this paper, it is
necessary to reduce Eq. (2.13) to a system of first order

equations. This may be accomplished by first multiplying
Eq. (2.13) by A™1

—_ p— 2 -1
s —A FU/h :-A B (2.14)
d X
then reducing Eq. (2.14) to its state variable form

d 1 N

|
[
=

= ATV, /N -ATB

The Method of Identification

The method used here for identification of parameters
in partial differential equations is hased on the Newton-
Raphson-Kantorovich expansion in function space. (see

Appendix C) Bellman and Kalaba [6] refer to this as

quasilinearization. This method reduces the solution of
boundary value problems for nonlinear equations to an
iterative process of solving boundary value problems for
linearized equations. This method has been illustrated in
several recent publications [6,11,12,13].

The particular details used in this study are closely

associated with those used by Holloway [11] in the identi-

fication of constants of an ordinary differential equation.
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Let us assume the general form of the partial differ-
ential equation given by

_ 2T U 27U
Gilu, 3%, 9%xZ, " " 3xm,%X,C)=0
1

I~ X

LEm (2.14)
where U is an s dimensional vector and X is an r dimen-
sional space representing r independent variables. C is a
vector repreéenting p constants appearing in the equation,

The partial derivatives are noted as follows

2'ui 2'us | 21

Xt X OXyt
o~ gl 2, . . . 2
oY% _ | 9%t Xk DX i
o Xt |8

2'us 2'Js . . . 2'us

LT X1

To solve this set of n equations, we reduce Eq. (2.14) to
a system of ordinary differential equations. As indicated
before, this is done by substituting finite difference
operators for the partial derivative operators with respect
to all independent variables except one. The remaining
variable Xy will be referred to as the continuous variable
and denoted as x. As described previously, the choice of

finite difference approximations is somewhat arbitrary, but

central difference approximations are generally used if it
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is possible to do so without requiring extra boundary

conditions to be imposed.

S B - ey
40 _ |Gt EMUd - - - Bl
d xi . e

S ELU) - - ERW)

The equations are reduced to the system of first order

differential equations

d%"’ir—- ?(V,,‘H,x,

c) (2.15)

where T is a vector function of Vi, h, x and c. V1 is a
vector of the state variables,'ﬁ is the vector of incre-
ments of the independent variables which are discretized,
and C is the vector of unknown constants.

The identification method can be described as follows:

(1) Adjoin to Eq. (2.15) the set of equations

gze=0

which is the set of differential equations governing the
unknown constants. Combine ﬁi and C into one vector

_ Vi

V= |-==

—

C
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(2) Linearize Eq. (2.15) by the Newton-Raphson-

Kantorovich expansion

K
—k+1 —K
d gt =pt 2L ( ~ V" + ot
dX
(2.16)
where k indicates the kth iteration ~

To solve Eq. (2.16) a solution k = 0 is required.
Several methods have been proposed for obtaining this
solution. One method is to estimate the values of the state
variables and store these as VO(x). A second method
involves the integration of the nonlinear equations to
obtain vo(x). Thus, by assuming a vector of inital condi-
tions V°(o) and integrating the nonlinear Egs. (2.15),
V¥O(x) is formed. VI(x) can also be integrated using VO (x)
in Eq. (2.16).

The process of solving the linear boundary value
problem is accomplished by the superposition of particular
solutions. This simplifies the computer programming but
increases the order of the matrix to be inverted in deter-
mining the proper initial conditions by one. In addition,
the use of particular solutions has the feature of giving
an explicit indication of the degree of convergence of the
iterative process. (see Appendix B) |

This method involves the perturbation of the initial
conditions to insure that the resuiting solutions will be

independent and well behaved. In addition, this
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perturbation process gives an explicit indication of the

sensitivity of the solution to the initial conditions of
the problem. This sensitivity is an important factor in
the system identification process, especially in partial
differential equations.

At this point, some indication should be given as to
the order of the system of ordinary equations which will be
solved. If Eq. (2.14) has r independent variables, (r-1)
of thesé are divided into n increments, then there will be

(r-1)(n-1) dependent variables for the approximate system

of equations. When the approximate system is converted to
a set of first order equations, the resulting system is
(r-1)(n-1)(m) where m is the highest order derivative with
respect to the continuous. independent variable. 1In
addition, this set must be integrated g+l times, where q

is the number of the unknown initlal conditions and unknown
constants. Thus (r-1)(n-1)(m)(q+l) equations must be
integrated for each iteration. .The order of the matrix to
be inverted in solving for the new initial conditions is
(a+l).

It is not difficult to see that probléms of dimension-
ality might be introduced if the increments of the
discretized independent variables become too small, the
number of independent variables become too large or the

order of the derivative becomes too high. Although there
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might be some difficulty due to dimensionality, the
conceptuality of such a procedure 1s not destroyed and no
limitations have been placed on the type of equations which
can be handled by this method, except that the resulting
ordinary differenﬁial equations should be quasilinear.

To illustrate the method, let us consider the Laplace

equation within the domain of the unit square.

WUxx +C Uyy = 0 (2.17)
with classical boundary conditions,
w1, y) = uix,0) =ulx,1) =0

u(o,y) = sin Ty (2.28)

To identify the parameter ¢, additional boundary values are
required. Eq. (2.17) is expanded into its "lines form"
which is
== + CE“(U) =0 1£i&n
d %
where n is the number of lines. Appendix D gives the

analytical solution of a three line approximation for c

I
[

Let

Vi Uy

Vien dVi /dx 1 £i4n

Von+st = C
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Thus, the state variable vector is

The nonlinear equations are

dVi

I = Vien (2-19a)
d\/iﬂﬂ__ 2

_g;(— "'_VZY\-Q-A. E (Vi‘) (2-19b)
dVen+

dxzn i =0 (2—19(:)

The linearized equations are formed by use of the linear-
ization process already described. It is helpful to note
that if E2 is a linear operator on the state variables, it
may be treated as a separate variable in the linearization
procedure. Eg. (2.19a) and Eq. (2.19c) are already linear

so that only Eq. (2.19b) needs to be expanded into a linear
equation.

el +1 K
QVisn = —Vomy EX(VD + (Vano = Vanes (= E (VD)

+(E V) ™ = £ (V) Y= Vi)

The resulting linearized equations are
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d\/ik+1 _ .k+1
"""d X" t+n
C:lVL‘S:1 K - 1 " ‘
d x - = ~Vang E° (Vi)K = (\Izt\n — Vznet) E (Vi)

- d Vanai
ax -0 (2.20)

Let us assume a three line approximation to the
problem as shown in Fig. 2.1 and choose a second order

central difference operator for E2.

EXVY) =( Vi —?_\/1 +Viey )/ h®

The matrix equation is

— | _
i — —_
X AZL : AZZ
, Where ,
-2 1 o)
1 -2 1
Ae=1 o | _,
L O o o A = [O]
-
| o o 1 o
A=l 0 1 0 © Az =[0]
| 1 O o @)

vl and v2 denote the boundary conditions at y = 0 and

y = 1, respectively.
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A
.3 L o 'lfz(x)
> V3(X\
Vz(X)

~ Vi(x)
> Ui (X)
X

A

A\

Figure 2.1 Three Line Approximation

The linearized equation may also be written in matrix

form .
| K
v <t Ay | A . —
?1\; = |-=4==| v** - B"
AZL:AZ’L’.
where
O O 1 O
A= o 1 o o Ay =[0]
1 O O O
- - K
e O O I —?.\/1+V2
| O O O |Vy-2Va+Vs
Ae=THe| O O O | Va—=2Vi3+% .
0 o o | o |
) -2 1 O
20 I S
Aun=he| o 1 -2
O 0 o
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For an initial approximation, k = O, an initial vector
VO(o) is assumed which contains the known initial condi-
tions and an estimate of the missing initial conditions

from apriori knowledge. For the problem under consideration

we choose
[ V(o) U (o,h)
Vz(0) wn(0,2h)
—5 V3(0) u (0,3h)
V (O): O(.l = OL»l
ol 2 o (2.21)
A3 ' K3
ol g | B A4 ]

where cLi, 1 £1i £ U4, are the estimates of the missing
initial conditions.

To find the solution of the linear boundary value
problem shown in Egs. (2.20), it is necessary to know
Vb(x), which is obtained by solving the nonlinear Egs.
(2.19) with initial conditions Eq. (2.21). Eq. (2.20)1is

then integrated using the nonlinear solution and the

initial vector Eq. (2.21). Since there are four unknown
initial values, it is necessary to generate four independ-
ent solutions. We do this by perturbing the unknown
initial conditions by some constant multiplier. We denote
this constant as /3 which may be different for each unknown
initial condition oLy A fifth solution of the linearized

equation is generated by using the unperturbed initial
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conditions, Eq. (2.21).

Let & (x) be the solution matrix of the linearized
Egs. (2.20) which obeys the equation

4 _
dx “A® +D (2.22)
where D:[—B:_B_: . {E]

Vl( 0) VL(O\) Vl(O) Vl(O) Vq (o)
Vo(o)  Va(0)  Va(0) Ve(0)  V2(0)
Va(0) Vz(o) V3@ Vie)  V3(0
SO=|Poty o oy oLy ol
X2 /5 0(2 O(z O(..z O(.g_
o3 Lz Ptz k3 K3
o g ol 4 oLy foty 04_4_

S

Let Q4 represent the operator which indicates the
value of x and the state variable for which the boundary
condition, bi’ is known. With this operator notation, the

following linear equations must be solved for ¥ .
5 -
bi=% (Qid(x)j ¥y 14148 (2.23)
:l=l- .
The vector Q; o (x4) denotes the row of the matrix d (x4)
which corresponds to the state variable for which the ith
boundary condition is given.
- Coupled with Eq. (2.23) is the auxilary condition
Eq. (2.24) required for the superposition ofvparticular

solutions
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5
> ¥i =1
t=1 (2.24)
Egs. (2.23) and (2.24) may be combined in the following
) notation |
b=S% (2.25)
~ where
Q4 @’Q'Xl)
Qo @ (%)
S= |—m—— T =
___ G ®(x)
O O

As a second example, consider the unsteady heat

conduction equation

2*u ‘
%_11{ = Coy? (2.26)

with boundary conditions

WwWx,0) = U(x.,1) =0
u(o,g\ = Sin MY

The Cauchy problem is correctly posed for this equation,
and it is expected that reasonable accuracy could be
obtained in the identification of the parameter "c." This
equation has been well studied, and its solutions are well

known. As was indicated in Chapter I, the convergence of
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the differential-difference equations is well established,

and the stability of the numerical integration of the
resulting equations was studied by Sarmin and Chudov [25].
For their studies, x was carried as the continuous variable.

The approximation of Eq. (2.26) results in the set of
ordinary differential equations

g%i= ¢ E*(Uq) Lt £ién

(2.28)

witg boundary conditions

Uo(x)= Un+1 (x)

Uilx)= sin (i /n+1)
The change of notation which has been used earlier in this
chapter is helpful in conceiving Eq. (2.28) as a state
variable type equation. Let V = ¢ so0 that the complete

n+l
set of nonlinear equations to be solved is

th

= Vot E (\/)
?ﬂ¥n+i O L £14n
The linearized set of equations are
K+l
g\>/(l \/"“"1 E (V) +(vn+x _Vn-\-i) E (\/)

d Vhet
d %

= 0O 1 £1 &N




29
The procedure for solution of these equations is the same

as has been described for the Laplace equation.

Overdetermined System of Equations

If the number of known boundary conditions {1 is
‘greater than the number of unknown initial conditions, then
8 will not be a square matrix and Eq. (2.25) will not have
a unique solution.

Among the most used methods of solving such problems
of overdetermined systems is the method of least squares.

A set of (gq+l) equations may be formed by minimizing the

square of the deviations from the given boundary conditions,

19

min (b —95¥) (b-s¥)
¥

where q is the number of unknown initial conditions.
Carrying out this minimization with respect to the

constants ¥ gives Eq. (2.29)
—5T(5-5%) - (b-5%¥) 8=0
-2s(b-8¥)=0
or STb=595Y (2.29)

However, consider that ,Q boundary values are given

such that ) > q where g is the number of unknown initial

conditions and ’Ql of these are known exactly. The
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remaining ,QQ are approximate boundary values to be fit in

a least square sense. Let us partition Eq. (2.25)

- |
b1 S oy ¥
N R N
b?. - 621 { Sl?_ XZ,
so that we obtain two vector equations
by = Su¥,+ S12 £ (2.30a)
bz_: Suxl‘*‘ 822 XZ ] (2.30b)

Since ¥ 7 is known from Eq. (2.30a), substitute it into
Eq. (2.30b)

—gx = 5111 (.E);' S %a)
Ez, = S?.l S;: (—51”‘ sz_gz) - Szz?z

Minimizing the square of the deviations with respect to the

remaining constants

min (52 =555 B~ $22-521 55 Si) %)

%2 _ _ ) _
( bz,“Su gﬁ b1 - (Szz "‘Szr Snl sz) Xz)
giving
— - A — T
(b= S21 S by — (522—521511 S12) ¥2)
(S22 —S2s S{fSn) =0 (2.31)
Letting

'5/ = S22—521 S: Siz
(2 (Ba=%2151 By) = (5Ys'%, (2.32)
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By substituting Eq. (2.30b) into Eq. (2.31)

INT T N ¥ ~
(S) be =(9) (52151"'522 Xz) (2.33)
Bi is the vector of',Ql_exact boundary conditions such

that 0 £ Ql £ g. b, is the vector of { o inexact boundary

2
conditions such that { 2+Ql > q. Xl contains the first
.Ql_constants and 1 5 contains the remaining (q-,Ql)

constants.
The auxiliary equation, Eq. (2.24) for the super-
position of particuia.r solutions is included in Eq. (2.30a).

If we consider the auxiliary equation to be the only

T
12

unperturbed solution vector, and sii is a scalar and equal

exact equation, S is the unit vector, §i£ is the

to 1. Thus

SI = S, *[—3—215521; T °§—§7.1]
or the columns of S are the difference between the
perturbed solution vectors and the unperturbed vector. The
boundary condition of Eq. (2.32) is altered in a similar

manner

-y =

EZ —S?.l 511 b; = Ez_gz_j_
(S/ )T(Ez_—é-21) z(SI)T Sl Yz
Eq. (2.32) reduces to

/.7

(S ) Bz= (SI)T(Szl ‘gx + 52272)
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An approach which has proven to be successful in the
problems‘we have considered is an alteration of the least
square approach. This pseudo-least square method substi-
tutes S in Eq. (2.33) for S’. Thus, in addition to

22
Eg. (2.30a), the equation

S22 Bz = S22 (S21 81 — S22 32) (2.34)

is used to solve for ¥ .

Boundary Value Problems

In the example problems considered thus far, it has
been assumed that the boundary conditions Uo and Un+l are
known. This requirement is convenient but not necessary.
Consider the following problem

AP = JO(Z%Y‘)
. (2.35)

where A 2 is the Laplacian operator andl%,is the first

zero of JO with the boundary conditions -

u(e,.5) =0
Ww(e,0) = finite (2.36)
wi(e,r) =u(p+2m,r)

The solution to this problem in cylindrical coordinates is

2
wilo,r)=—-Jo(23r)/ (23)
Let us consider this problem given on the domain of the

unit square. The governing equation is
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2 ,
3 X2 —+ a‘_?a. = Jo(Z%H

W)
»

I~

Q

2 242
where Y = ((.5-x)"+(.5-y)")
The approximate equations are

d*Vi _ 2. -
Txz — “E(UD +Jo(29r) 14l én

with boundary conditions appearing at points interior to
the boundary of the domain. Let n = 7 such that the

Square is divided into eight equal slabs as illustrated in
Fig. 2.2.

Figure 2.2 Line Approximation for
Circular Shaped Boundary

For this example, the functions Ug(x) and U_(x) are not
known. However, since Ug(xy) and U (x,) are known, we
might consider making Ug(x) = Ug(xy) and U (x) = Uo‘(xu). |
However, this will lead to a poor approximation of E2(U1)'
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For an alternate approach, we must realize that two

additional boundary conditions can be found for Uo(x) and

U8(X).

d Uo(X)
CiX K=Xq =0

d Us(x) (2.37)
dx |x=x =0

Although‘we will refer to Egs. (2.37) as boundary conditions
for the approximate equation, they are not boundary condi=-
tions for the continuous problem. To show how these
conditions arise, assume that Uo(x) is a secant to the

curve C as shown in Fig. 2.3.

L
? X
Ly DR——

{

> U (X)

Figure 2.3 Tangent Boundary Condition
As % is made arbitrarily small

i (Uax6)=Us(x4)) — dUalu)|
&> 0 AX - dx

X=Xgq
if the known function along the curve C is continuous.

A forward and backward finite difference approximation
of second or fourth order is used for EE(UO) and EE(U8).
This approach has proven to be successful for the prcblem
being considered and the results will be discussed in

Chapter III.
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CHAPTER III

RESULTS AND CALCULATIONS

The results of the numerical calculations will
illustrate the accuracy of the solution to the boundary
value problems and the rate of convergence in identifi-
cation of constants in the partial differential equations.
Thé results are compared to analytical results in order to
obtain an estimate of the accuracy of the integration

procedure.

Laplace Equation

Identification in the Laplace equation was considered
since the Laplace equation is unstable when integrated as
an initial value problem, that is with Cauchy data. Fisher
[22] and Hartee [26] suggested that the elliptic equations
were unsultable for solution on the analog computer because
of the instability of the approximate equations and the
difficulty of obtaining the correct initial conditions to
solve the boundary value problem.

In Chapter II, it was shown how the linear boundary
value problem can be easily solved so that there is little
difficulty in obtaining the correct initial conditions.

By the use of a finite domain and a greater number of

significant figures than is availlable on analog computers,
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one is able to obtain a good approximation to the solution
of the continuous problem and identify the parameters in
the equation.

Tables 3.1 and 3.3 show the numerical solution of

z =
AU =0 | (3.1)

with boundary conditions

UK, 0) = Uk, 1) = ulxX,,y)

.2
U(o,y) = sin Ty (3-2)

The analytical solution is

'U(Xﬂﬁ) = SihTFB(COShTFX— % sinhx) (3.3)

The instability of this equation is exhibited by the
fact that any error is propagated and grows as the basic
solution of the equation grows.
The Laplace equation with Cauchy data is the classical
example of an ill-posed problem of mathematical physics in
the sense of Hadamard [27]. However,‘the consideration
according to Tykhonov's formulation gives the possibility
of constructing an approximate solution with a certain
guaranteed degree of accuracy in spite of the fact that an -
exact solution of Eq. (3.1) with approximate Cauchy data

does not exist at all or may strongly deviate from the true

solution [28].
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For the problem under consideration

u

=% = — T sinTy Cosh T Xy

Siﬂ‘_}}’) Xy

As x. 1is increased aly/EX‘x _ approaches a limit. The

1 0]
ill-posed nature is then illustrated by the fact that as
Xq is increased and the same Dirchlet boundary conditions
are imposed, the change in the initial derivative of the
Cauchy data is decreased. Thus, a point is reached at

- which changes of the initial derivative occur beyond the
number of significant figures carried by the computer, and
it would not be possible to find a slope which would meet
the boundary conditions with an error less than € .

Both the instability and ill-posed nature must be
considered, but these problems do not eliminate the
possibility of identification for such equations. The
instability is inherent, but by an+appropriate integration
scheme it is possible to keep integration errors smaller

- than the truncation error which is due to the finite

approximation. The ill-posed nature 1is a constraint on the

method for the Laplace equation and means that associated

with Xl is an error & such that

e ( Xl) = MaX l M(Xl,\%w\)— Um(XQ!
Ywm

The solutiqns of the 3, 5 and 7 line approximation

with a second order central difference operator are shown
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TABLE 3.1

APPROXIMATE SOLUTIONS OF THE LAPLACE EQUATION
USING 2ND ORDER DIFFERENCE OPERATORS

b o N 3 lines 5 lines 7 lines Anslytical
.1 .5 .7348 <7317 . 7306 .7292
.25 .5 L4614 4565 4548 4526
.5 5 . 2066 .2025 .2010 .1992
.75 .5 .0790 .0769 L0762 .0752
.9 .5 .0292 .0283 .0280 .0276
.1 .25 .5196 - .5166 .5156
.25 .25 .3262 -- .3216 .3201
.5 .25 .1461 - 1422 .1409
.75 .25 .0559 - .0538 .0532
.9 .25 .0206 o .0198 .0195
.1 L1667 el .3658 - . 3646
.25 <1667 - .2282 -- . .2263
.5 .1667 - .1012 - .0996
.75 .1667 o -- .0384 -- .0376'
.9 1667 — .o -- .0138

¥ no values are available
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TABLE 3.2
DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE
SOLUTIONS SHOWN IN TABLE 3.1

X Yy 3 lineé 5 lines 7 lines
.1 .5 -.0056 ~-.0025 -.0014
.25 .5 -.0088 ~.0039 -.0022
5 .5 -. 007k ~.0033 -.0018
.75 5 -.0038 -.0017 -.0010
.9 5 -.0016 ~.0007 -.0004
o1 .25 -.0040 - -.0010
.25 .25 -.0061 - =.0015
.5 .25 -.0052 -- -.0013
.75 .25 -.0027 -- -.0006
.9 .25 ~.0011 - -.0003
.1 .1667 - ~.0012 -
.25 .1667 - ~.0019 -
.5 L1667 -- -.0016 -
.75 .1667 -- -.0008 -
-9 1667 -- -.0003 -

* no values are available
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in Table 3.1 and compared with the analytical solution.
The error in the approximate solutions from Table 3.1 is
shown in Table 3.2. Table 3.3 shows the increased accuracy
obtained by using fourth order operators for the deriva-
tives and in Table 3.4 the error in the solutions from
Table 3.3 is presented. This increase in accuracy is
significant and shows that for the chosen domain’the
instability does not nullify the solution. The results in
Tables 3.1 and 3.3 were obtained with a predictor-corrector
integration program with a step size of .0l. The maximum
number of corrections allowed was four.

A fourth order Runge-Kutta integration was used to
compare the results with that of the predictor-corrector.

The same step size was used and the run times were nearly

- identical. However, as indicated in Table 3.5, the Runge-

Kutta was more accurate as x,'the continuous variable,
increased. The ﬁime required to solve the linear boundary
value problem with seven lines was less than .5 minutes on
the Sigma VII digital computer.
The inverse problem was SOlved for
2 2

9%+ c g =0 (3.4)
with the same boundary conditions indicated in Eq. (3.2)
with values of u specified at points interior to the

domain.




TABLE 3.3
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APPROXIMATE SOLUTIONS OF THE LAPLACE EQUATION

USING SEVEN LINES WITH 2ND AND 4TH

ORDER DIFFERENCE OPERATORS
X NG 2nd order Lth order Analytical
.1 .125 «2795 .278995 «279056
.1 .375 6750 .673690 .673700
o1 .5 . 7306 .729202 . 729208
.25 .125 1740 .173167 .173236
.25 .375 U202 - 418206 418229
25 5 4548 452677 452688
.5 .125 .0769 .076215 .076257
.5 .375 .1857 .184076 .184100
.5 .5 .2010 .199247 .199268
.75 .125 .0291 .028767 .028785
.75 .375 .0703 +069479 . 069492
.75 .5 .0761 .075205 .075218
. .125 .0107 .010576 .010582
.9 .375 .0259 .025542 .025548
.9 .5 .0280 .027648 .027652
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TABLE 3.4 '
DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE
SOLUTIONS SHOWN IN TABLE 3.3
X y 2nd order Lth order
.1 .125 .0005 .000061
.1 .375 .0013 .000010
.1 .5 .0014 000006
.25 .125 .0008 .000069
.25 .375 0020 ¢ .000023
.25 .5 .0022 .000011
.5 .125 .0007 . 000042
.5 .375 .0016 . 000024
.5 .5 .0018 .000021
.75 .125 . 0004 .000018
.75 .375 .0007 .000013
.75 .5 .0009 .000013
.9 .125 .0002 . 000006
.9 .375 .0004 . 000006

.9 o5 .0004 . 000004

‘e
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TABLE 3.5

COMPARISON OF INTEGRATION PROCEDURES FOR THE
4TH ORDER, SEVEN LINE APPROXIMATION
OF THE LAPIACE EQUATION

Predictor- Runge-
X y Corrector Kutta Analytical
.25 .125 .173167 173179 .173236
.25 375 418206 418233 .418228
.25 .5 U52677 452699 452688
.5 .125 .076215 0762249 .076256
.5 375 .184076 .184098 .184100
.5 .5 .199247 .199271 .199268
.75 .125 .028767 .028772 .028785
.75 375 .069479 .069490 .069492
.75 5 .075205 .075217 .075218
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Table 3.6 shows the results of the calculations using
three data points correct to four significant figures.

u(xy,y7) = u(.5,.125) = .0762
u(xs,¥5) = u(+5,.25) = .1409
u(x3,y3) = u(.5,.5) = .1992

The initial estimate of the constant was chosen to
deviate 10% from correct value and the initial derivatives
were chosen as convenient values for input to the program
which deviated by approximately 20%. The seven line
approximation with predictor-corrector integration of
step size .01l was used in the identification procedure{
Seven iterations were required for this identification,
and the constant, ¢, was identified to four significant
figures as shown in Table 3.6 which is equivalent to the
accuracy of the data.

Also shown in Table 3.6 are the initial conditions,
o> 8t each iteration and the constants Z{i obtained from
the matrix inversion. A perturb factor,3, of 1.0001 was
necessary to keep the perturbed solutions of the same
order of magnitude as the unperturbed solution. It may be
observed that (3 -1) Xi is the percentage change in the
initial conditions and that the constants Xi, 14147,
were adjusted so that they were approximately equal and
converged uniformly and monotonically at a quadratic rate.

Table 3.7 shows the accuracy to which the boundary values
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TABLE 3.7 )
SOLUTION OF BOUNDARY VALUES FROM IDENTIFICATION
SHOWN IN TABLE 3.6 WHERE by, bp and bs
ARE FIT IN A LEAST SQUARE SENSE AND
SPECIFIED TO 4 SIGNIFICANT DIGITS

i specified bi solution bi
1 .1992 .1992
2 L0762 L0762
3 .1409 .1409
b 0.0 8. E-11
5 0.0 3. E=11
6 0.0 -1. E-10
T 0.0 2. E-11
8 0.0 -2. E-10
9 0.0 T. E-11
10 0.0 1. E-10
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were met.

Heat Conduction Equation

The heat conduction equation

, 2
U = %——-Hua (3.5)

with boundary conditions

U(x,0) =wnlx,1) =0
W (oY) = sin Yy

was approximated by substituting a second order central

2
difference operator for giﬁ and integrated with a
predictor-corrector integration method. The first results

(3.6)

shown in column 1 of Table 3.8 show that the accuracy
obtained from a three line approximation is poor. An
integration step size of .0l was used. The ratio,
w= Ax/ Ayg, was .16 for this integration step size and was
held constant as the number of lines increased. The second
column contains the results of a seven line approximation
again with w = .16. There is some improvement in accuracy,
but still somewhat less than desirable. The fifteen line
approximation proves to be accurate to two or three
significant figures.

In Table 3.9 is shown the error in the approximate
solutions shown in Table 3.8.

To contrast the second order operator, a higher order




TABLE 3.8

APPROXIMATE SOLUTIONS OF UNSTEADY HEAT
CONDUCTION EQUATION USING 2ND
ORDER DIFFERENCE OPERATORS

48

X y 3 lines 7 lines 15 lines Analytical

.05 .125 - .235 +2339 .2336

.05 .25 ko L34 1323 4317

.05 .5 .626 614 .6115 .6105

.2 .125 -- .545 E-01 .5350 E-01  .5316 E-01

.2 .25 .108 - ,100 .9885 E-01  .9822 E-01

.2 .5 .153 142 .1398 .1389

A .125 -- 776 E-02 .7478 E-02  .7384 E-02

A .25 .166 E-01  .143 E-01 .1382 E-01  .1364 E-O1

U .5 .235 E-01  .203 E-01 .1954 E~01  .1930 E-01
1.0 .125 - .224 E-04 .2043 E-O4  .1979 E-O4
1.0 .25 .597 E-O4  .415 E-O4 .3775 E-O4  .3657 E-OL
1.0 .5 84 E-O4  ,586 E-O4 .5338 E-O4  .5172 E-O4
2.0 .125 - .132 E-08 .1091 E-08 .1024 E-08
2.0 .25 .504 E-08 .243 E-08 .2015 E-08 .1892 E-08
2.0 .5 .713 E-08  .344 E-08 .2850 E-08 .2675 E-08

¥ no values are available
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TABLE 3.9
- DIFFERENCE BETWEEN ANALYTICAL AND APPROXIMATE
b SOLUTIONS SHOWN IN TABLE 3.8
b d y 3 lines 5 lines 7 lines
.05 .125 - -.002 -.0003
.05 .25 -.011 -.002 -.0006
.05 .5 -.016 -.004 -,0010
.2 .125 - .001 .0003
.2 .25 ~.01 .002 .0006
.2 5 .015 .004 .0001
A 125 - .003 E-O1 .0009
i .25 .03 E-01 .007 E-O1 .0018 E-01
R .5 .04 E-01 .010 E-O1 .0014 E-01
1.0 .125 - .027 E-Ok4 .0064 E-O4
1.0 .25 .232 E-O4 .050 E-04 .0118 E-04
1.0 .5 .327 E-Ob .069 E-O4 .0166 E-OL
2.0 .125 -- .030 E-08 .0067 E-08
2.0 .25 .315 E-08 .054 E-08 .0123 E-08
2.0 5 445 E-08 .066 E-08 .0175 E-08

* no values are avallable
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operator was used to approximate 8211/ ay2 as was done for
the Laplace equation. A fourth order central difference
operator, Eq. (2.6), was used for the lines not adjoining
a boundary and a special operator shown in Egs. (2.7) was
used for the lines adjoining a boundary.

A significant increase in accuracy is observed in the
calculations shown in Table 3.10. The ratio, w, was kept
equal to .16 throughout the integration of the higher order
equations. These results show that a good accuracy may be
obtained by use of a reasonable number of lines to approxi-
mate the continuous equations. In Table 3.11 the error in
the approximate solutions in Table 3.10 is shown.

The inverse problem was to identify c¢ in

U _ . U

?x T C g (3.7)
with the boundary conditions given in Eq. (3.6). As a
first experiment, one boundary condition was specified at
X = 5. A seven line approximation was used with predictor
corrector integration while maintaining w = .16. The

boundary condition, given at y = .5, was b, = ,0071919,

1
which is accurate to five significant digits. This
accuracy was greater than was obtained in the direct
integration with seven lines as shown in Table.3.10. The

constant was identified to four digits of accuracy in seven

iterations as shown in Table 3.12, and the boundary value
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TABLE 3.10 |
*"EQUATION USING MTH ORDER DIFFERENCE OFERATORS
X y 7 lines 15 lines Analytical
.05  .125 .233527 .233628 233628
05 .25 431635 .431689 431687
.05 .5 .610504 .610502 .610498
.2 .125 .5312587 E-01 .531599 E-O1 .531590 E-01
.2 .25 .981923 E-01 .982270 E-01 .982251 E-01
.2 5 .138884 .138914 .138911
A .125 <T37756 E=-02 . 738465 E-02 .738439 E-02
4 .25 .136362 E-01 .136451 E-01 .136446 E-O1
A 5 192871 E-01 .192971 E-01 .192963 E-01
1.0  .125 .197588 E-0OL .197956 E-O4 197937 E-O4
1.0 .25 .365209 E-O4 .365776 E-OL .365740 E-O4
1.0 .5 .516544 E-O4 .517285 E-O4 .517234 E-OL
2.0 .125 .012057 E-08 .102400 E-08 .102380 E-08
2.0 .25 .188635 E-08 .189210 E-08 .189173 E-08
2.0 5 .266806 E-08 .267584 E-08 .267531 E-08




TABLE 3.11

DIFFERENCE BETWEEN ANALYTICAIL, AND APPROXIMATE

SOLUTIONS SHOWN IN TABLE 3.10
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X y 7 lines 15 lines

.05 .125 .000100 -.000001

.05 .25 .000052 -.000002

.05 .5 .000006 - 000004

.2 .125 .000024 -.000001

.2 .25 .000033 -.000002

2 .5 .000027 -.000003

A .125 .000068 E-01 -.000002 E-01

A .25 .000084 E-01 -.000005 E-01

A .5 .000092 E-01 ~.000008 E-01
1.0 .125 .000349 E-Ok -.000019 E-Ok
1.0 .25 .000531 E-Ol ~.000036 E-0b
1.0 .5 .000690 E-Ol ~.000051 E-Ol
2.0 .125 .000323 E-08 ~.000020 E-08
2.0 .25 .000538 E-08 -.000037 E-08
2.0 .5 .000725 E-08 -.000053 E-08




TABLE 3.12
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IDENTIFICATION IN UNSTEADY HEAT CONDUCTION
EQUATION FROM ONE BOUNDARY VALUE
CORRECT TO 5 SIGNIFICANT DIGITS

Iteration c b ¥
1 5000 084790 3.708
2 6854 .033953 2.330
3 8451 .015437 1.280
4 .9533 .0090486 4.36 E-O1
5 .9949 .0073699 4,92 E-02
6 .99981 0071940 5.97 E-Ok4
7 .99987 .0071919 4,28 E-08
Analytical  1.00000 .0071919
TABLE 3.13

IDENTIFICATION IN UNSTEADY HEAT CONDUCTION EQUATION
FROM 10 DATA POINTS CORRECT TO 4 SIGNIFICANT
DIGITS USING LEAST SQUARE FIT

Iter. c by b5 b1g ¥
1 +5000 .2989 .1114 .03243 5.8
2 .7933 .2586 .05401 007626 2.2
3 .9658 .2375 .03528 .003254 3.4 E-01
4 .9986 .2336 .03254 .002768 8.5 E=03
5 . 99944 .2336 .03248 .002757 3.3 E-06
Anal. 1.00000 .2336 .03245 002752
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was satisfied to five digits of accuracy. It may be noted
that the constant ¥ decreased at a quadratic rate and thus
the initial condition also converged at a quadratic rate.
The execution time required for this identification was 1.8
minutes.

Ten dafa points were then specified along y = .125
which had been rounded off to four significant digits. In
Table 3.13 are shown results using a least square fit of
the data. The constant was identified to four digits of
accuracy in five iterations, and the boundary conditions
were met to different degrees of accuracy. This is easily
explained when one realizes that the least square approach
minimizes the sum of square of the deviations from the
specified boundary conditions and thus the smaller boundary
values would not be met as acéuraﬁely. A weighting
procedure would alleviate this problem.

In Table 3.14 are presented the results of a pseudo=-
least square fit. The results are similar to those of
Table 3.13. For this problem there is very little
difference in the results of the two types of fit criteria.
Table 3.13 shows the difference between the given data and

the integrated solutions for the least square and the
pseudo-least square fits. There is little difference in

the sum of the square of the deviations from the boundary

values for the two methods.




TABLE 3.14

PROBLEM SHOWN IN TABLE 3.13 USING
PSEUDO-LEAST SQUARE FIT
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Iteration ¢ by b b10 ¥
1 .5000 .2989 .1114 .03243 6.7
2 .8362 .2531 .04859 .006171 1.7
3 .9841 .2354 .03372 .002973 1.5 E-01
4 .9992 .2336 .03249 .002760 1.2 E-03

Anal. 1.00000 .2336 .03245 .002752

TABLE 3.15

SQUARE FIT FOR DATA SHOWN IN
TABLES 3.13 AND 3.14

5 «99935 .2336 .03248 .002758 -1l.2 E-O7

COMPARISON OF LEAST SQUARE WITH PSEUDO-LEAST

pseudo least least
i square -by¥ square -bi*
1 2.0 E=06 -1.0 E-05
2 -6.0 E=05 -7.0 E=05
3 3.8 E-05 2.7 E-05
l 3.2 E-05 2.3 E-05
5 3.2 E=05 3.0 E-05
6 2.5 E-05 2.0 E-05
7 2.0 E-06 2.0 E=06
8 12.2 E-06 9.9 E-06
i 9 8.6 E-06 6.9 E=06
Lfﬂ 10 6.1 E-06 4.9 E-06

*specified boundary condition to be met
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Another set of calculations was made using the same
ten boundary conditions used in Table 3.13 and 3.14 except
that the boundary conditions were correct to only two
significant figures. The constant ¢ was identified to
twq significant figures as shown in Table 3.16 in five

iterations.

Poisson Equation

A nine line approximation was used to solve

2 2

in the domain of the unit square with the boundary condi-
tions given in Eq. (2.36). A fourth order central
difference operator was substituted for lines n = 2 through
n = 8 and second order forward and baékward difference

operators for lines n = 1 and n = 9, respectively.
E2(U) =(—Us—4Us—-5U, —2U,)/ay”®
E°(Us) =(2Us =BUg - 4Ur — Us) / ay*

The results are shown in Tables 3.17 and 3.18 and compared
to the analytical solution. The approximation was accurate

to three and four significant figures within the unit circle.
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Mildly Nonlinear Equation

The problem

W
Uxx T Uyy = € (3.9)

was considered over a rectangular domain, 0 £ x &£ .5 and
0 £y & .25 with

Ul =0
where S is the boundary of the domain. A seven line
approximation was used with fourth order difference
operators for uyy.

The solution presented some problems because et

could
not be calculated by the standard library subroutine if
u > 173. Thus a method similar to an imbedding procedure
was incorporated into the program. The integration was
continued until dUi/dx became larger than some number z
which was arbitrarily chosen as 170. When this occurred,
say at Xl’ the integration was stopped and the initial
conditions were found which would satisfy the boundary
conditions at Xqe The problem was integrated again, and
if the derivative became greater than z, the procedure was
repeated.

It was found that this iteration of similar boundary
value problems did not always converge. The procedure
would reach a given point X. and not continue to the

1
specified boundary. However, when the integration step
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size, A x, was reduced to a certain value, the procedure
converged.

In Table 3.17 are shown the solutions of Eq. (3.9) for
four representative points in the domain. The results in
column 1 and 3 were obtained by integrating along lines in
the x direction, while column 1 and 4 were integrated along
lines in the y direction. The results obtained in all four
cases required the use of the iteration of similar boundary
value problems. For a éeven line approximation with lines
in the x direction and using a four order set of operators
for Ee(Ui), it was found that the iteration of similar
boundary values did nct converge for a step size equal to
or greater than .0025 in a fourth order Runge-Kutta scheme.

The numerical inctegration of Egq. (3.9) has also been
considered by Bellman and Kalaba [6] and Greenspan [29].
From the information given in [0], it is difficult to make

any conclusions comparing the methods.
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TABLE 3.19

APPROXIMATE SOLUTION OF MILDLY NONLINEAR EQUATION
AT FOUR REPRESENTATIVE POINTS IN THE DOMAIN

X vy uq (%,¥) Us(X,y) u3(x,y) uy (x,y)
.0625 .125 ~.004547 -.004575 -.0046017 -.0046020
.125 .125 -.005968 -.0060345 -.0060396 -.0060402
.0625 .25 -.005298 -.0053396 -.0053396  -.0053399
.125 25 -,007020 -.0070778 -.0070778 -.0070785

ul(x,y) = 2nd Order Approximation with three continuous

lines in the y direction. 0 £ y <.

us(x,y) = 4th Order approximation with seven continuous
lines in the x direction. 0 < x = .25 -

u3(x,y) 4th Order approximation with seven continuous
lines in the y direction. 0 = y = .5

uy(x,y) = 4th Order approximation with fifteen continuous
lines in the x direction. 0 = x = .25
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CHAPTER IV

SUMMARY, DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

Summarz

A method of solving a class of inverse problems known
as identification problems has been described for partial
differential equations. The procedure employs the method
of lines for approximation of the partial differential
equation and the Newton-Raphson-Kantorovich expansion in
function space which reduces the solution for nonlinear
equations to an iterative process of solving linear
equations.

The method of lines with the superposition of parti-
cular solutions was shown to be an effective method of
numerically solving linear boundary value problems. By
the use of the linearization procedure, the identification
problem and the nonlinear partial differential equations

were reduced to successively solving linear boundary value

problems.

The general procedure was numerically illustrated for
the Laplace equation, a Poisson equation, an unsteady heat

conauaction equation, and a mildly nonlinear equation.

Discussion and Recommendations for Further Work

The identification procedure proved to be stable in
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both examples considered, and the constant was identified
to the same accuracy as the data. This indicates that the
solution of the partial differential equations was sensitive
to the constant parameters to be identified. This sensi-
tivity is an important factor in any identification process.

The Laplace equation integrated as an initial wvalue
problem and the solution of the unsteady heat conduction
equation for negative time are both examples of ill-posed
problems. The Laplace equation 1is sensitive to initial
derivatives which led to its i1ll-posed nature and exhibited
itself in instability of numerical integration. The
unsteady heat conduction equation is insensitive to initial
values of the function and thus can lead to an ill-posed
problem if it is desired to identify the initial value of
the function from data within the domain. The i1ll-posed
nature is exemplified by the resulting ill-conditioned
matrix to be inverted. It was shown that the possibility
of the ill-posed nature did not interfere with the identi-
fication. Further work needs to be done in the area of
inverse problems associated with diffusion type equations.

In this dissertation the Jacobian matrix associated
with the linearization process was evaluated analytically.
However, some indication has been given [38,39] that this
evaluation might be done numerically. It is not entirely

clear though how this would affect the required computation
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time or the stability of the process.

Another improvement which can be made and should be
investigated is the use of different higher order operators
for approximating the derivatives with respect to all but
one of the independent variables. These operator approxi-
mations lead to the truncation error, which was the
dominate error in the procedure of identification. Boyd
[24] has used some best fit operators which are designed
to control the noise introduced by this approximation.
Again, further investigation should be directed along these
lines to make the approximation method more effective.

A problem inherent in the Newton-Raphson-Kantorovich
linearization procedure is the convergence space of initial
approximation. This convergence space did not present many
problems for the equations considered in this dissertation.
However, it is conceivable that such problems will arise
and the methods discussed in Appendix C might be incorpb-
rated to increase the convergence space. Another
possibility is to employ gradient techniques to get an
approximation which is within the convergence space. The
method of "similar boundary value problems" was used to
solve two point boundary value problems in which the nature
of the problem and/or the integration scheme is unstable.
An investigation should be done to extend this method to

multipoint boundary value problems.
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Conclusions

The identification procedure was shown to be effective
for the equations,
Uxx + CUyy =0
\l + e Q Uxx - O
The integration procedure was also shown to give good

results for the following boundary value problems:

o

Usx 4+ Ugy = F(xy)

Uxx x*gg:=€iu
The method was shown to identify the parameters in these
equations to the same accuracy as the data.

The method of reduction and integration procedure is
easily programed and provides an effective way of solving
both linear and nonlinear partial differential equations.

Dimensionality might be critical for some problems, but
this is inherent in most numerical methods for solution of

boundary value problems in partial differential equations.

However, it is not as big a problem in this method as it is
in other general methods.

The method is easy to program. It is assumed that the
program developed by Holloway and Childs and described by
Holloway [11] is available. The method then requires a

programming effort comparable to that required to solve an

initial value problem using a documented forward integration
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scheme. Generally it requires preparation of one data card
for each irregular boundary value in addition to a few
information data cards. The method requires less program-
ming effort to adapt to a new problem, probably less
computer time to solve a given problem to an arbitrary high ~
accuracy, and yields the most explicit indication of
accuracy of most and possibly all general methods for the
numerical solution of multipoint boundary value problems,
in linear and nonlinear partial differential equations
within arbitrary boundaries, presently known to the author.
Thus, extension to more difficult problems than the simple
examples used 1s merely a matter of programming and

computer time.
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APPENDIX A

DEFINITION OF TERMS

In this éppendix is presented the definitions of some
terms which appear in the dissertation and should be
defined for thevclarity of the presentation.

Differential-difference equations. This refers to

those equations which arise from substitution of difference
operators for differential operators and have two or more
independent variables with differentiation with respect to
one and differencing with respect to the others [30] pg. 127.

Unstable. The numerical integration of a differential
equation will be termed "unstable™ if for a given set of
initial conditions and a step size, h, the solution diverges
from the solufion of the differentisl equation as the
integration proceeds [31] pg. 147.

Mildly nonlinear. The elliptic equation

Wxx T WUyy T WUze = F(X,H,E)Ux,\Lg,U\z)

is said to be "mildly nonlinear" if

QF
*5—\1>O

oF oF oF
dUx , 99Uy , U=z are bounded

Under sufficiently strong smoothness hypotheses, a "mildly

nonlinear" Dirichlet problem has a unique solution [29].
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Quasilinear ordinary differential equation. An

equation in which the highest order derivative appears
linearly.

Spurious roots. If a differential equation is

approximated by a difference equation of higher order than
the corresponding differential equation, then spurious
(or extra) solutions arise. The roots corresponding to

these spurious solutions are known as "spurious roots."




7
APPENDIX B

SUPERPOSITION OF PARTICULAR SOLUTIONS

From the classical theory of ordinary differential
equations, it is known that the solution of an nth order
linear ordinary differential equation is a linear combi-
nation of n independent solutions of the homogeneous
differential equation plus a particular solution of the
complete differential equation. This appendix will
demonstrate that an additional condition is required in
order to use superposition of particular solutions to
satisfy the complete equation and the boundary conditions.

Consider the following system of linear first order

differential equations

-(dj:\)iz AV—&—E - (B.1)

where A is an n x n matrix which may be a function of x.

Let — —
V =&p¥ (B.2)
and n+i
=1
?[—:1 ! (8.3)

where ép is a matrix of solutions of Eq. (B.l) of which n

are independent and therefore ép is of rank n.

§§[> ::[:?51E Pz_l T 'i ?21+1i]




5

kv, | : : 17
= [ Xx: KZI o 'I‘Xh+1]
Thus §p satisfies the differential equation

d é = A aép - (B.4)

where D is an (n X n+l) matrix

— = p—
p=[BiB} - - 18]
To show that Eq. (B.2) is the solution together with

(B.3), it is necessary that it satisfy Eq. (B.1).
Substituting Eq. (B.2) into Eq. (B.l)

dipx AdpY +8

(B.5)
Subtracting DY from both sides of Eq. (B.5) and
rearranging terms,
(43 _43,-0)Y =B-0¥
(B.6)

By Eq. (B.4) the left side of Eq. (B.6) is identically the

null vector and therefore

DY =8B
which gives
n+1
Bj ¥ = B 1 £j4n
J ¢ L J
=1
or el

™
o<
f

1

which is the condition given in Eq. (B.3).
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If the initial conditions are chosen such that .§n+l

satisfies the boundary conditions, then

En-s-i - @pl ‘X'/ + Fn-l-l X\m—i (B.6)

where §I/> is a submatrix of @P

éP ZE@P/ % P-r-\.-rl]

vl

¥ =|-3—-
L
Solving for Xn+1 in Eq. (B.3) and substituting into
Eq. (B.6) gives

= v o - z
Pn+1_: @P X -+ Pn+§, _Pn-\-l; Lz_.l XL

which reduces to

=S -~ | == - | [ - -/
O —_-[ P;_“‘Pm-l: P?.—'Pﬂ-*-l} o Pn"Pn—»l] X
It will be shown that

de’t [FTL"'P_V\-t-l E.-F;Z—Pn-»l: - e E TD;\"EW«-)_] 0

by proper choice of the initial matrix @P (xo) where X

is the initial value of x.

Thus X ! =0
and XY\-\-l:l (B.7)

The rank of the initial matrix, ép (x,), must be n.
We denote by o< the vector which represents the initial

conditions of the solution Fn + We introduce an array Q

l.
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such that

QL'—T&O lé—lé—n

We now take the initial matrix to be

- =
A1+ Q) Xy o oLy oLy
N o OL2_+ Qz D > ) oLy
0(3 Aq . * ) ‘ 0(.3 O(.3
§P(X°>= - . 3 . . . . -
| oL Kn . " T Xn+Qn  Kn

By successively subtracting the last column from each of
the other columns, etc., we get the normal form of this
matrix to be a diagonal matrix with diagonal elements Q T
Thus, §p (x) is obviously of rank n.

With this choice of initial conditions, the constants
are related directly to the new initial conditions.

V (Xg) = (%) ¥

or
n+i :
Vilxe) = oLt JZ_:lX;, + ¥ Qi
Substituting the constraint condition Eg. (B.3) gives

Vilxe) = oty + 31 Q1 (B.8)

It is obvious then that

o1 ¥i /oy =(Vilkd -k ) /ety (3.9)

Equation (B.9) shows the relative change in the initial
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condition vector if the solution §£+l does not satisfy the
boundary conditions. We have found by experience that the
values Q1 cen often be quite arbitrary, but, in some cases
it is advantageous to use

0L = By
where generally
10 %18l <L
and Ly must be nonzero. If 4 is near zero, we use
arbitrary scalars for Q..

Theoretically,'the solution of a linear problem can be
solved with a one pass algorithm. However, roundoff error
often prevents this in numerical applications. Thus, we
suggest that even linear problems be solved iteratively
with the above scheme.

‘The work shown in this appendix follows Childs [32]
and Holloway [11l] and has since appeared in part in an
independent investigation reported by Miele [33].

In summary, it has been shown that linear boundary
value problems can be solved by superposition of particular
solutions with an additional constraint equation. The
following observations are of importance:

1l. The matrix to be inverted is never singular. This
is ensured by the proper choice of initial conditions.
Apparently, Miele [33] pg. 265, had trouble with this.

2. In an application, the goodness of satisfaction
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of Eq. (B.T7) together with Eq. (B.9) is an explicit

indication of the roundoff error existing in the numerical
method of solution.
This latter observation was not reported by Miele. We

do agree with the positive observations of Miele.
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APPENDIX C

NEWTON-~RAPHSON-KANTOROVICH EXPANSION IN FUNCTION SPACE

The Newton's method for functional equations has been
often referred to as the Newton-Raphson-Kantorovich expan-
sion in function space [6] pg. 22. The method is very
important because it is one of the few practical methods
available at the present time for finding the actual
solution of a non-linear functional equation [34] pg. 695.
The theory of this method is based on the theory of
functional analysis and no attempt will be made in this
appendix to show the convergence properties which are
generally shown through the theorems developed in functional
analysis or through their relation to the theory dynamic |
programming with its concept of approximation in policy
space. Convergence proofs may be found in Kalaba [34] and
Kantorovich and Akilov [35].

In this dissertation the linearization procedure was

carried out within the framework of the ordinary differ-
ential equations; However, this expansion may also be
carried out directly for partial differential equations.

As a first example, consider the second order quasi-
linear partial differential equation considered by

Kantorovich

AU\xx"*“BU.XH ‘*‘CUgg +D =0 (C.1)
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Let -

P(u) =AW xx + BUxy+CUyy + D (C.2)

where A, B, C and D are functions of x, ¥y, u, u
k+1

Assume u to be the solution. Expand Eq. (C.1l) about

the solution uk+1

K
0= aP(uO‘ ( K*LUK)+ BBP'L(}&)

Ko et .
(U —w )
4 oPlw (u‘gl_uz )+3P(u)‘ (U )

Uy (c.3)
4 2P w1 %y DR
auuil( Ugy Uy au&g (Wy u‘ig\‘*‘ P )
For Eq. (C.1)
aP

o BI A ) E'U\X’gl _AB ) au%' (c.4)

P |¥ K
S I (a'ﬁuxx a& Uo(\j %% Uyy + a) =d1 (C.5)
P

aP ¥ (aA 4 8C 3D ¥ K
DUx| T ( DU X U au u\{\d ux) =dz (c.6)
2P [*_ (2A ac 3D K K
DUy T (aug\lxx auxlkw Uy Yy ™ U@:dg (c.7)

ap [« _ap X x L 2p |
AU xx Uxx 9Uxy qu a RN Uyy
= P“(uw) —D* (.8)

Eq. (C.3) then reduces to the linearized equation

K+l

(AKU'::: +E>'U~x15 ‘*‘Q Uyy +D Yy +
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K +1 ’ -+ K -
+(dy U +ds Uy *ds U
K K K K
—(di u ‘““dz“LkK +ds W ) =0
/ . K+1 K+1 K+l
Let P [u*71(u” =AU+ B U xy +c"u§§§
K+1

K K+1 -+
wdi U daug +ds U

Thus, with the operator, P, notation the quasilinear

equation

P) & Prullu) =0 (c.9)

is reduced to the solution of the linear -equations

/ K —+1
P L 1 —u) + PLur1(u®)=0
K= 1_’2). . . (C.lO)
The neceséary conditions for such an expansion is that
oP 9P P
oUW 1y 9Ux > aU\xA

be continuous and that u® be sufficiently close to u*,

where u’ is the solution, so that the expansion Eq. (C.10)
is valid.

Consider a set of nonlinear ordinary differential
equations which are written as - a nonlinear first order

vector differential equation
d

dx = £(0,x) (C.11)
The linearized equation is
d——K+1
A

K +1
TIx = #(ﬂ“)xﬁ”f%\ (Wrtmy (€22
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One problem which is often associated with Newton's
method is finding an initial estimate of u° which is close
enough to u¥* to give a convergence sequence of functions
Tl k=1, 2, ...
Two methods have been used in our studies to extend
the convergence space. The first method is a modification

of Eq. (B.T)

K+1 K K
ol = OQ'L—G-(I.——G')\KEO(_'L/&
(C.13)
where this the ith constant from Eq. (2.25), o(?’ is the

estimate for thg ith unknown initial condition on the kth
iteration, ¢ is a damping factor which is a function of k
such that 0 £o (k) £1. If o = 0, then Egq. (C.13) is
identical with Eq. (B.7). If o is close to 1, then there
will be little difference between 0<§+1 and 04?‘ as long as
Xi and f3 are not too large. With o # 0, one could not
expect quadratic convergence and Eq. (C.13) would be
related to gradient type algorithms. This modification and
some similar such modifications have been considered by
Breakwell, et al [35), Lastman [36] and Paine [12].
Another modification is to use apriori knowledge
concerning the missing initial conditions. This apriori
knowledge is to place limits on the missing initial
conditions. Again, this may interfere with the quadratic

convergence, but increases the convergence space.
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APPENDIX D

SOLUTION OF LAPLACE EQUATION BY METHOD OF LINES

This appendix presents the analytical solution of the
"method of lines" approximation to the Laplace equation

with boundary conditions

ulty) =ulx,0) =ulx,1) =0 (D.1)
u(o,y) = sin Ty
This equation is approximated by a set of lines in

the x direction and a second order central difference

operator is substituted for © 2u/ dy<.
d%Um 2
a-)zz—’ + ( Um+1-2.Um+Um-’L§/h =0 (b.2)
L £m £&n
Assuming a solution of the form

Um () = 0(m) v(x)

s

gives
2
Q (m) g—%—g +(Q(m+=2(m)+ Qm—D)v/f =0

or

2 2
3 /v =~ (Qm-1)=20m) +lm-10) /W olm) = $
| LE&méen
To find Q@ (m) we solve the homogeneous difference equation

o(m-1)— (Z-h’LSQ) Q(wﬂ +om-1) =0 (D.3)

with boundary conditions
%

Q(0) = o(n+1) =0
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The general solution of the difference equation, Eq. (D.3),
is
Q(Yﬁ) = ¢ ,>\T + C» ’>\Y2
where Cl and 02 are arbitrary constants and 5\1 and A
are roots of the characteristic equation
N—(2-R8#IN+1 =0

From boundary conditions Eq. (D.1l) we have
Q(O)ZC;\_ + Cp, =0 or Co=-Cy

Q(n"‘l)zci')?:l“’cz'}\v: = Cx(’khﬂ nﬂ)—

Hence,
: \ .
A\ AL = 2WLS
( 7\12 ) _ 'l. or ?\2 —-(1) n+1 :‘.e n-+1
S = ‘\_)2‘ -;..)n

But since A\ 1 N 5 = 1, it follows that

A12=<3 el A2=%7-—ej77m
thus )
ostm) = ¢, (e T — e -
Substituting Eq. (D.4) into Eq. (D.3)
?— _ Sin “———-—-—?fi?*”h;- ;:i:r:%"{' + gin Tplm=l
n+1
— _ 2 sin Eﬁ%' (cos Hi3 —1) (D.5)
h? sin "‘-%%l“f

= 2(1L—-cos(Ts/n+1))/h* =4sin® L (L)s 0)/hz

In addition
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. TWSm . TS (Ym=Yo)

es(m) = C sin n+1 — Csin QQ Y
Solving the second equation arising from the separation of
variables

Us(x) = As € osX Bs'e"%SX

The solution of Eq. (D.2) is a combination of the linearly
independent solutions

1TS(¥&ﬂ4Q°3
9

n
Um(X) = SZ=1 sin Tf- (UnYo) (A €27 +‘Bse"?’sx )

where AS and BS are arbitrary constants.

Ums(X) =(Ase®* + Bse ™" Vsin

These constants
are found by imposing the remaining boundary conditions

Uwm (O) = SIin %“T

Um(L) = 0O

The solution is

L)L}Z

found to be

3.0611
Uy = fg‘—_- (cosh 3.061l% - g‘ﬁt, 3,02111 Sinh 3.0611%)

2
Uazﬁ\h
By comparing this solution with the analytical solution

Eq. (3.3) it is obvious that they differ only by the
eigenvalue 3.0611 instead of T .

It may be shown that eigenvalues approach those of the
continuous problem as the n, the number of lines,is

increased. From Eq. (D.5)
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2s(h) =%\- Sin “25; 143 4&n

It is necessary to aepply l'Hopital's rule to find the limit

as h—+0

d Bs(h) ST sh
Lim = =& cosh B w-0
h=>0 dh X G n

S z
Q 1£9 Zn
Thus, in the limit, the eigenvalues coincide with the

eigenvalues of the continuous problem.
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